Effect of Demecolcine-Assisted Enucleation on the MPF Level and Cyclin B1 Distribution in Porcine Oocytes

نویسندگان

  • Suo Li
  • Jin-Dan Kang
  • Jun-Xue Jin
  • Yu Hong
  • Hai-Ying Zhu
  • Long Jin
  • Qing-Shan Gao
  • Chang-Guo Yan
  • Cheng-Du Cui
  • Wen-Xue Li
  • Xi-Jun Yin
چکیده

Demecolcine (DEM) treatment of oocytes induces formation of a membrane protrusion containing a mass of condensed maternal chromosomes, which can be removed with minimal damage prior to somatic cell nuclear transfer (SCNT). However, the effect of this method on the distribution of maturation-promoting factor (MPF) in porcine oocytes has not been reported. Here, the level of MPF and the distribution of cyclin B1 were assessed in porcine oocytes following DEM treatment. In addition, the efficiencies of DEM-assisted and mechanical enucleation were compared, as were the development (in vitro and in vivo) of these oocytes following SCNT. MPF was uniformly distributed in oocytes that had been treated with 0.4 μg/ml DEM for 1 h. Immunofluorescence microscopy showed that in untreated oocytes, cyclin B1, the regulatory subunit of MPF, accumulated around the spindle, and was lowly detected in the cytoplasm. DEM treatment disrupted spindle microtubules, induced chromosome condensation, and reduced the level of cyclin B1 in the nuclear region. Cyclin B1 was uniformly distributed in DEM-treated oocytes and the level of MPF was increased. The potential of embryos generated from DEM-treated oocytes to develop in vivo was significantly greater than that of embryos generated from mechanically enucleated oocytes. This is the first study to report the effects of DEM-assisted enucleation of porcine oocytes on the distribution of cyclin B1. MPF in mature oocytes is important for the development of reconstructed embryos and for efficient SCNT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caffeine can be used for oocyte enucleation.

The removal of chromosomes from recipient oocytes is one of the key steps in nuclear transfer cloning. Although microtubule interrupters have been successfully used for oocyte enucleation, their potential side effect on oocyte developmental potential should be considered, and less harmful drugs should be explored for chemical-assisted enucleation. Based on our previous findings that any maturat...

متن کامل

Study of the efficiency of chemically assisted enucleation method for handmade cloning in goat (Capra hircus).

The present investigation was carried out to find an efficient chemically assisted procedure for enucleation of goat oocytes related to handmade cloning (HMC) technique. After 22-h in vitro maturation, oocytes were incubated with 0.5 μg/ml demecolcine for 2 h. Cumulus cells were removed by pipetting and vortexing in 0.5 mg/ml hyaluronidase, and zona pellucida were digested with pronase. Oocytes...

متن کامل

Demecolcine-induced enucleation of sheep meiotically maturing oocytes.

The objective of this study was to investigate the possible effect of demecolcine, a microtubule-disrupting reagent, on induced enucleation (IE) of sheep meiotically maturing oocytes. Immunofluorescent staining with anti-tubulin antibodies was used to examine the spindle status of the oocytes. When the oocytes with intact germinal vesicles (GV) were cultured in the medium containing various con...

متن کامل

Cloned buffalo (Bubalus bubalis) embryos from adult cumulus cells and cytoplasts prepared by demecolcine-assisted enucleation of meiotically matured oocytes

We report a simplified chemically-enhanced enucleation of in vitro matured buffalo oocytes for generating cytoplasts for producing nuclear transfer (NT) embryo production. Oocytes aspirated from the ovaries from abattoir were subjected to in vitro maturation for 22h. In the first experiment, the in vitro matured (IVM) oocytes (22h) were denuded and treated with demecolcine (0.50 μg/ml IVM mediu...

متن کامل

Selective degradation of cyclin B1 mRNA in rat oocytes by RNA interference (RNAi).

Cyclic adenosine monophosphate (cAMP) keeps oocytes in meiotic arrest, thereby preventing activation of the key regulators of meiosis, p34cdc2/cyclin B1, (known as maturation-promoting factor (MPF)) and Erk 1 and 2, members of the mitogen-activated protein kinase (MAPK) family. The activity of MAPK in oocytes is upregulated by Mos. We previously demonstrated that Mos translation in rat oocytes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014